
DEVELOPMENT OF HYBRID ANALYTICAL-NUMERICAL METHODS 
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The expediency of using approximate numerical or analytical methods of calcula- 
tion with respect to elliptical coordinates and accurate methods with respect 
to unidirectional parabolic variables is demonstrated. 

Much of the scientific research of A. V. Lykov was devoted to the development of an 
analytical theory of heat conduction. As well as the broad use of classical methods of 
solving mathematical-physics boundary problems, Lykov developed a theory of application 
of integral transformations to the solution of problems of noncoupled and coupled heat and 
mass transfer. 

The modern trend to complication of mathematical models of thermophysical processes, 
associated with a more profound formulation of well-known or new phenomena of linear and 
nonlinear transport, entails the development of improved methods of calculation for the 
given problems. The development of such methods is unimaginable without profound study 
and reinterpretation of Lykov's scientific legacy for the current level of development of 
thermophys ics. 

In studying heat- and mass-transfer processes, the temperature is the basic physical 
quantity. In the general case, it is not only a function of the input thermophysical param- 
eters, but also depends on the coordinates of the current point M(x, y, z) and the time 
t, i.e., is a function of four arguments, in the systematic application of accurate or 
approximate (numerical or analytical) applied-mathematics apparatus with respect to these 
variables, the classification of these variables into parabolic, elliptical, and hyperbolic 
types proposed in [i] proves useful; this terminology is adopted by analogy with the classi- 
fication of partial differential equations. For example, in the heat-transfer equations 
with liquid flow in straight tubes with constant cross section D (y, z E D) 

c,,,, -F ~-, (u, z) OT (1) 
. ~ .. = div (}~qrad T) + q (M, t), 

O-~<t<cr  O~.~x<c~,  d iv (ZqradT)=  0 ~ O T  + _ ~ z  7. , 
. t 

the variables t and x are unidirectional parabolic coordinates, while y and z are bidirec- 
tional elliptical coordinates varying in the finite region D. 

It is expedient to introduce the property of integral transformation 

b 

= j f (x) k x) dx (2) 

where k(~, x) is the kernel of the transformation, which allows some information to be ob- 
tained regarding the original f(x), i.e., regarding the temperature field T(x, y, z, t) 
from its mapping. This possibility of using integral transformations to investigate heat- 
transfer problems was first noted by Lykov, whose wrote [2] that "the transition from dif- 
ferential equations to algebraic equations consists not only in replacing the partial deriv- 
ative 8mT/~x n by the expression pm~ but also in introducing additional relations which take 
account of the boundary conditions, i.e., the interaction of the body with the surrounding 
medium. Physically, this means transition from the actual values of the quantities being 
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investigated (differential equations and uniqueness conditions) to mean values taken in 
accordance with the conditions of the specific physical problem by methods of operator trans- 
formation." 

Suppose that the kernel k(~, x) is nonorthogonal with unity, i.e., f bk(~, x).idx ~ 0; 
then 

b 

f f (x) k (o~, x) dx 
�9 " - -  ( 3 )  

/e (~., x) dx 
a 

is the integral mean of the desired physical quantity f(x) in the interval [a; b] with averag- 
ing kernel k(~, x). When k(~, x) ---- i, ordinary integral averaging is obtained. 

Setting w(y, z) = k, the kernel of transformation, for the temperature field in Eq. 
(i), it is found that 

iT (x, ~, z, t) w (y, z) @az 
( T (x, t) ) = D 

j'.!" (y, z) a dz 
D 

is the mean mass temperature. Below, replacing T(x, y, z, t) by <T(x, t)>, a simplified 
model of the solution of a generalized problem of Graetz-Nusselt type is obtained; now, 
setting k(~, x) = k(p, t) = exp (-pt), the expression 

(4) 

T 

.! T (x, g, Z, t) k (p, l) dt 
~ ( x ,  u, z , p ) -  0 ~ (5 )  

t ~ (P, t) at 

is the integral mean temperature in the time interval �9 > 0 with averaging kernel k(p, t) = 
exp (-~t). In the limit as �9 ~ ~, it is found that 

lim2~ (x, y, z, p ) =  

i T  (x, f/, z, t) exp ( - -p t )  dt 

1 
lira (I - -  exp (-- pl:)) - -  (6) 

= p ~  (x, u, z, p ) =  ~* (x, ~:,,, z, ;), 

where T(x, y, z, p) is the Laplace transform and T*(x, y, z, p) is the Carson-Laplace trans- 
form. An interesting direct relation is obtained between T*(x, y, z, p) and the mean tempera- 
ture over the time with the exponentially decreasing kernel exp (-~t), p > 0, over the whole 
time interval of the nonsteady process. Hence, if the Laplace transformation does not include 
a physical interpretation, multiplication of this expression by p leads to the specific 
content of the quantity T*(x, y, z, p). This relation gives real physical meaning to the 
well-known unique correspondence at the two limiting points 

l imi t ' ( x ,  !! z, p ) = l i m t ~ ( x ,  y, z, p ) = l i m T ( x ,  y, z, t), (7) 
p-~O p~O l ~  

l imT*(x, j ,  z, p ) = t i m p  T(x, y, z, p) = l im T (x, g, z, O. (8) 

On t h e  b a s i s  o f  t h e  p r o p e r t y  i n  Eq. ( 8 ) ,  by i n t r o d u c i n g  an o s c i l l a t o r y  component o f  
t h e  t r a n s f o r m  T* in  t h e  v i c i n i t y  o f  an i n f i n i t e l y  r emote  p o i n t  p, Lykov o b t a i n e d ,  f o r  t h e  
first time, expressions for calculating the temperature at small Fo permitting, for example, 
the calculation of the temperature when Fo = 40 by means of two or three terms, rather than 
the 40 terms in the accurate solutions [2]. 
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The application of integral transformations to a differential operator of second order 
with respect to the elliptical coordinates in the nonsteady heat-conduction equation leads, 
for the mapping (transform), to solution of the Cauchy problem for a first-order equation. 
The original (prototype), i.e., the solution of the initial problem in the case of integral 
transformation in a finite interval, is found in the form of a functional series, where 
summation is taken over a discrete spectrum of eigenvalues and eigenfunctions. For semi- 
infinite and infinite intervals - a= 0, b = ~ or a = -~, b = ~ in Eq. (2) - transformation 
from the mapping to the original is by means of summation over a continuous spectrum, i.e., 
the solution of the problem is expressed in terms of an integral. 

In the first case, the application of accurate applied-mathematics apparatus leads 
to representation of the set of solutions in the form of elements of functional space, the 
bases of which are eigenfunctions of the differential thermal-sensing operator with respect 
to a bidirectional elliptical coordinate; their linear independence and orthogonality is 
determined by the eigenvalue spectrum. These eigenvalues are found by solving the so-called 
characteristic equations, which correspond to a specific type of boundary conditions and 
the geometry of the body. For example, the bases of the functional spaces in which the 
temperature fields inside a plate, a sphere, and a spherical shell are found are various 
systems of trigonometric sine or cosine functions, while for solid and hollow cylinders 
they are systems of Bessel functions. On the other hand, it is known from mathematical 
analysis that these functions are accurately expressed by converging power series, i.e., 
the power polynomials may be approximated with any accuracy. Hence, the representation 
of the solution in such a functional space, the coordinate bases of which are power poly- 
nomials, will be well founded and goal-directed. 

Such methods of calculation of the mathematical models of nonsteady heat-transfer pro- 
cesses include the method of combined application of Laplace-Carson integral transformations 
with respect to parabolic variables and the finite-difference method with realization of 
orthogonal projection of the discrepancy over the whole region of variation of the bidirec- 
tional elliptical coordinates. The advantage of this approach is the more reliable and 
unchallengeable calculation of heat-conduction problems in multidimensional bodies of non- 
classical form, for which it is not possible to write the characteristic equations in ex- 
plicit form and find the eigenfunctions. Generalized problems of Graetz-Nusselt type may 
be effectively investigated by this method, and the given problems may also be solved in 
those cases where the differential operator div(kgradT) with respect to the bidirectional 
elliptical coordinates X includes a function of these same variables, i.e., it is possible 
to find the temperature fields in tubes with turbulent flow, in inhomogeneous solids, and 
in materials of composite structure [2-4]. 

The temperature field in a plate (m = 0), a cylinder (m = i), and a sphere (m = 2) 
is now determined as a solution of the problem 

a T  _ 1 0 ( ~,~ dT  _]_ q~ (~, Fo) 2~ z (9 )  
OFo t'~ O~ k , [T(~, Fo)bo :o  = 7o, 

f~--~-{ q- Bi T (~, Fo) = Bi qD (Fo)q- q'' (Fo___~) ] = 0, 
~=1 ~ j ' ~= o (io) 

where 0 ~ g = r/R ~ i for m = i; 2; -i s r = x/R ~ I, Fo = at/R 2, Bi = ~R/X. 
of Laplacian transforms 

In the space 

d ( d T ~  - (ii) d~ ~m ~ .... q~ (~, p) ~ E ''~ , ~ ) - - [ , o f ( ~ ,  p)--~ol + )~ - o ,  

I~ } I~' ~(P) I [d'']~ (12) = ( p ) +  - -  , d-  BiT(~, p) ~=~ L ~ j \--~--~ J ~ o  O. 

Determining the accurate solution of the boundary problem in Eqs. (ii) and (12) with 
respect to the elliptical variable r and transforming to the region of originals with respect 
to the time at each fixed m, as was done by Lykov in his investigations, the solution of 
the initial problem may be found. In this approach, the basic difficulty is associated 
with inverse transformation to the original; fairly complex mathematical maneuvers are re- 
quired here. These special mathematical investigations by Lykov made a scientific contribu- 
tion to the classical theory of operational calculus. 
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The solution of Eqs. (ii) and (12) is now continued by the method of orthogonal projec- 
tion of the discrepancy. In the class of stabilizing input functions of the thermal load 

p -~ 0 F o  ~ ~ G~ 

= T~ + q~ = const, 
O~ 

] imp~(~,  p ) =  limq~(~, Fo)= q~ (~), 
p ~ 0 Fo-+  

--I -- 
J (13) 

(14) 

it is evident that 

Multiplying Eqs. 

lira pT(~, p) = timT(~, Fo) = T* (~). 
p ~ 0  F O ~  

(ii) and (12) by p and passing to the limit as p ~ 0, it follows that 

d~d ( ~  dT*d~ ] ] + qo (~) 2~ R~ ~" -- O, 

- - ~  + Bi T* (~) = g i  r ~ +  , = 0 ,  
~=: . \ d~ 1;=0 

and hence i t  fo l lows  t h a t  when qv(r = qv = cons t ,  qv(r = qv( 1 - ~2), 

(15) 

(16) 

(17) 

(18) T . ( ~ ) = T c +  q__t+ q~R z ( B i + 2  ~z) 
2k (m + 1) Bi ~ ' 

q~, R z ~ Bi (m -~ ,5) + 8 
T* (~) = T~ + q~ + 

4E (m -}- 1) (m -]- 3) [ Bi 
(19) 

- -  2~  (m + 3) + (m + 1) ~ } Q 

By the method of choosing the optimal system of basis coordinates [5] with two forms 
of the steady distribution of the internal heat sources following the transient conditions, 
the temperature field in the heat-liberating elements (HLE) is found as the solution of 
Eq. (ii) accurately satisfying the boundary conditions in Eq. (12), in the form 

) T~(~' P ) = ~ ( P ) +  q~'(P)oL + a : ( p ' m ) (  Bi-l-2Bi ~2 + 

(20) n 

q- ~L (P, m) (I -- ~z)2 ~2(~-2) 
h=2 

qc (P) [ Bi (m + 5) -]- 8 
T.(~, p ) = $ ( p ) +  ~ + a : ( p ,  m)[ Bi 2~ 2 (m + 3) + 

n 

+ ~(m+l)  + ~a-h (p, m)(1 __~Z)B~Zh. (21) 
k ~ 2  

The procedure for determining the mapping coefficients ak(P, m) (k = i, 2, ..., n) 
and their physical interpretation was outlined in [3]. For the case when qv(s Fo) = qv = 
const, it follows from the abbreviated first-order system that 

[ ITo--p ~ , (p )+~  ) q~ R z { 1 1 
al(p, m ) -  - -  4 ' 

2(m+l ) [p - l -A(Bi ,  m)] 2Z(m+ I) p p+A(Bi ,  m)(' 
(22) 

where the expression 

A (Bi, m) = 
Bi (m + 1) (m -I- 5) + (Bi + m + 3) 

2 Bi z @ 2 Bi (m + 5) -~ (m z -~- 8m @ 15) 
(23) 
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gives good agreement with the square of the first root (pl 2) of the three characteristic 
equations [3]. 

With constant boundary conditions 

(' ,p(Fo) + - -  
\ 

the relative excess temperature is 

0(~, Fo, m ) =  T(~, Fo)- -To = 1 +  A(Bi, m) ( B i + 2  
T~ + q__t __ To 2 (m + 1) Bi 

6~ 

Po 
__g2 exp[- -A(Bi ,  m ) F o ] +  2 ( m +  1) { 1 - - e x p [ - - A ( B i ,  m) Fol} ;~ (24) 

( B i - t - 2  ~2) p o =  q~R 2 
• Bi ~ ' )~ (T~+ q--2-~--T~ 

The expression in Eq. (24) practically coincides with the precise formula for Foe 0.i and 
tends to the precise asymptotic solution in Eq. (18) as Fo + ~. 

If ak(p, m) is calculated from the complete determining system, and then the limit 
as p + 0 is found, the result obtained is 

lim p a~ (p, m) = lim al (Fo, m) = 
p~O Fo-~ 

in the first case and 

in the second. 

lira pa l  (p, m) = lira al (Fo, m) = 
p~O F o ~  

For k e 2, in both cases 

q~ ~2 

qv R 2 

4% (m --{- 1) (m -}- 3) 

lira Pah (P, m) = lira a h (Fo, m) = O, 
p~O F o ~ O  

i.e., the approximate solutoins in Eqs. (20) and (21) in the region of the originals tends 
to the accurate solution as Fo ~ ~. Calculation in the second, third, and subsequent ap- 
proximations only refines the temperature variation in the period of transient conditions 
(0 ~ Fo ~ 0.i). Note that, in determining the temperature at points of the functional spaces 
(for example for a cylindrical HLE from a system of Bessel functions), such effective solu- 
tions with the above properties cannot be obtained. 

Setting 

Z 0 : OT 
div(~.qradT)-- i r  '~ j , q , ,=0 ,  m- -O;  1, 

r m ar \ Or , 

in Eq. (i), and applying a Laplace-Carson transformation with respect to the variables Fo, 
x = (l/Pe)(x/R) 

it is found that 

~T* (~:, s, p) = sp .... T (~, X, Fo) exp [-- (sX ~ p Fo)] dX dFo 
O0 

d ( d~* 
dE ~m ) [p @ sw(~)~*(~, s, p)~"'+ [p Tr s~(~)% (p)]Y"= O, (25) 

_ ~ 7 - -  - w . . . .  

where w(6) = 2(1 - g2) for laminar Poiseuille flow with m = 1 and w(g) = 66(1 - 6) for a 
plane channel (m = 0) of width R. For a plane liquid layer running off an inclined plane, 
w($) = 3/26(2 - 6). 

Suppose that the tube wall is thermally thin, and the heat transfer of the liquid flux 
with the external medium is described by generalized boundary conditions of the third kind 
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+BiT*(~, s, p) =Bi  ~*(s, p ) +  q~(ss p) , 

(26) 
,;d~ 
~ ) ~ o  = 0 .  

For a plane channel and a liquid layer running off an inclined plane, the condition (dT*/ 
d~)$= 0 = 0 means that the lower wall is adiabatic. With any profile w($), the temperature 
field in the liquid flux accurately satisfying the boundary conditions in Eq. (26) is found 
in the form 

T~ (~, s, p)= q)* (s, p) + -~ (s, p) + at(s, p)( Bi + 2 " 
, Bi ~2) @ (27) 

n 

After determining dk*(S, p) by the method of orthogonal projection of the discrepancy and 
transition to the region of originals, the temperature field exponentially stabilizing over 
time and along the liquid flow is found. More details on this approach may be found in 
[3]; below, a simplified method of investigation is outlined. Let 

<~*(s ,p)>  = 

1 

(mq- 1) ~ff'*(~, s, p) w(~)~'nd~ 
0 

1 

(m + 1) .!" w (~) ~ d~ 
0 

1 

(m+ 1) ~w(~)~"d~ = 1 
0 

and also 

< ~* (s, p) > = '7"* (s, p) = T (X, Fo), 

where T(X, Fo) is the mean mass temperature with velocity profile w($). As a simplifica- 
tion of the mathematical model, it is assumed that 

1 

(m+ 1)JT(~, X, Fo)~md~= T(X, Fo), T(X, Fo)= [T(~, X, Fo)lt=l. 
0 

Under these  assumptions,  a f t e r  mul t ip ly ing  Eq. (25) by (m + 1) and i n t e g r a t i n g  with respect  
to ~ from 0 to 1, taking account of the  boundary condi t ion  in Eq. (26), an a lgebra ic  equa- 
t ion  in T*(s, p) i s  obtained;  hence, 

pTo q- s -~o (P) 
9*@, p )=  p + s + ( m +  1) Bi + 

(m+l )B i [~* ( s ,  p ) +  q*(s,~ P) ] (28) 

+ 
p + s @ ( m +  1)Bi 

The temperature variation over time and along the liquid flow when ~0(Fo) = To, ~ (X, Fo) = 
Tc, qc(X, Fo) = qc is found from the formula 

T(X, Fo, m)= T o + ( T c + - ~ - - - - T o ] { 1 - - e x p [ - - ( m +  1)Bi[]}, (29) 

where f = Fo for X > Fo and f = X for X < Fo. Graphs of the relative temperature 

T (X, Fo) --  To 
o(x ,  Vo)= 

T~ -}- qJ~x --  To 
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Fig. I. Variation in relative excess temperature over time in 
fixed cross sections X (given by the numbers on the curves): 
a) Bi = 0.5; b) 2. 

for m = i, Bi = 0.5, and Bi = 2 are shown in Fig. i. Equation (29) coincides satisfactorily 
with the calculation of the temperature by the unsimplified model for small Bi (0 < Bi ! i). 
Using Eq. (28), the temperature with other forms of other thermal load may be calculated 
from the simplified model, when the temperature variation along the current radius or along 
the channel height is not taken into account, as is often done in solar technology [6]. 

Setting qv = 0, m = 0, 0 ! ~ = x < i, �9 = Fo in Eq. (9), the heat-conduction equation 
obtained is approximated by a finite-difference formula 

T ~ l  T i i h _ Tk+I--2T~ - -  + T k - I  ( 3 0 )  
A t  (Sx)  2 ' 

where Tki = T(Ax'k, Ax.i), Ax = l/n, T0 i, Tni, and Tk ~ are values of the known functions 
~1(~), ~2(~), f(x) = T(x, 0) with boundary conditions of the first kind. 

In [6], a numerical experiment to solve Eq. (30) whencp1(~) =~2(~) = 0 and with the 
initial temperature profile in the form of the lateral sides of an isosceles triangle was 
outlined. For n = 20, &x = i/n = 0.05, with A~/(~x) 2 = 5/11 good agreement with the accurate 
data was obtained; when Ax/(4x) 2 = 5/9, there was rapid accumulation of the calculational 
error, which reached an unacceptable level at the middle of the plate (up to 150%). Al- 
though the numbers 5/11 and 5/9 are close, opposite results are obtained, because the sta- 
bility condition for Eq. (30) is 

A~ I 
- (Ax)~ ~ < - 2  (31)  

Decrease in Ax with the aim of improving the convergence of the numerical solution may have 
the opposite result. Evidently, with &T as small as may be desired (&x ~ 0), the limiting 
analog of Eq. (30) will be stable with any Ax, i.e., it is more expedient to solve the sys- 
tem of differential equations 

d% _ T ~ + ~ - - 2 % + % - ~ ,  k =  1, 2, ..., ( n - - l ) .  ( 3 2 )  
d~ (Ax) 2 

Solution of Eq. (32) in matrix form when ~i(~) = ~2(x) = Tc, f(x) = T O gives the first (n = 
2), second (n = 4), and third (n = 6) approximations at the middle of the plate (x = 0.5) 
in the form 

@(I) (~) _ T (T) -- To = exp (-- 8x), 0( 21 (~) = 1.207 exp (-- 9.333 x) -- 
%--To 

- -  0.207 exp ( - -  54.627 ~), ( 3 3 )  

0(3) (~) = 1.244 exp ( - -  9.648 ~) - -  0.333 exp ( - -  72 ~) -I- 

+ 0.089 exp ( - -  134.352 x). 

The sequence of numbers 8, 9.333, 9.648, ... increases monotonically and tends to the accurate 
eigenvalue ~2 = 9.8696. The method of orthogonal projection with respect to the elliptical 
coordinate x = ~ gives the sequence of numbers i0, 9.8697, 9.8696 ...... which de- 
creases and has the accurate eigenvalue as its lower bound. 
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The application of numerical methods with respect to all the arguments leads to results 
in which it is difficult to see exponential stabilization of the solution along the variation 
in parabolic and even unidirectional elliptical variables [I]. The given hybrid numerical- 
analytical methods of calculation find temperature fields which are exponentially stabilizing 
with respect to the time and along the liquid flow. Rapid convergence of the approximate 
eigenvalues to the accurate value here denotes good agreement of the exponential stabiliza- 
tion in the approximate solutions with the temperature stabilization in the accurate solutions. 

CONCLUSIONS 

Hybrid numerical-analytical methods of calculating the temperature fields are proposed, 
on the basis of the accurate mathematical apparatus with respect to unidirectional parabolic 
variables (over time and along the liquid flow) and approximate numerical or analytic methods 
of calculation with respect to bidirectional elliptical coordinates (finite-element method, 
orthogonal projection of the discrepancy, difference method, integral averaging, etc.). 

NOTATION 

p, s, parameters of double Laplace~arson transformation in mapping space; t, time; 
x, y, z, coordinates of current point M; <f>, integral averaging of function f; w, stabilized 
velocity profile; ~ (X, Fo), arbitrary temperature of external medium; X = (i/Re)(x/R); Pe = 
wmeR/a, Peclet number; R, tube radius or height of slot channel; Bi = ~R/%, Blot number. 
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